979 resultados para AGGREGATE MORPHOLOGIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self-consistent field theory. Five typical micelles, such as core-shell-corona, hamburger-like, segmented-wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well-known that the self-assembly of block copolymers either in water or in organic solvents can form a wide range of morphologies in nanometer dimensions depending on its chemical nature. In the present study, the complexation and aggregate morphologies in a model AB/AC diblock copolymer system consisting of polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) in water were studied using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and dynamic light scattering (DLS). By varying the relative amounts of the two block copolymers, a variety of bilayer aggregates were formed, including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. The hydrophobic PS blocks were segregated as the cores while the hydrogen bonded PEO and PAA blocks formed the coronae of bilayer aggregates. We also investigate how the addition of PS-b-PEO into PS-b-PAA solutions influences the aggregate morphology of the resulting complexes. This work introduces a viable route to multicompartment vesicles in aqueous solutions. The formation of block copolymer vesicles in water is of particular interest because of their potential in various applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Janus structures have attracted a great deal of interest because of their fascinating properties and potential for applications. In this study, we demonstrate that hyperbranched polymers, bearing randomly placed docosyl (C22 alkyl segment) and PEG segments on their periphery, can readily reconfigure so as to segregate the alkyl and PEG segments, thereby generating Janus-type structures that we have termed Janus hybramers. DSC studies clearly reveal an endothermic transition that corresponds to the melting of the docosyl domains, while Langmuir isotherms demonstrate that these polymers form stable monolayers that appear to undergo a slight densification beyond a critical surface pressure; this suggested possible crystallization of the docosyl segments at the air-water interface. AFM studies of the transferred monolayers reveal various interesting aggregate morphologies at different surface pressures suggestive of island formation at the air-water interface; at the same time they also provided an estimate of the monolayer thickness. These Janus HBPs also form vesicles as evident from TEM and AFM studies; the AFM height of the deposited vesicles, as expected, was roughly 4 times that of the monolayer. SAXS studies revealed the formation of lamellar structures; the interlamellar spacing was largest when the relative mole fractions of docosyl and PEG segments were similar, but the spacing decreased when the mole fraction of either of these peripheral segments is substantially smaller; this suggested the possible presence of interdigitation within the domains of the minor component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigated the size, submicrometer-scale structure, and aggregation state of ZnS formed by sulfate-reducing bacteria (SRB) in a SRB-dominated biofilm growing on degraded wood in cold (Tsimilar to8degreesC), circumneutral-pH (7.2-8.5) waters draining from an abandoned, carbonate-hosted Pb-Zn mine. High-resolution transmission electron microscope (HRTEM) data reveal that the earliest biologically induced precipitates are crystalline ZnS nanoparticles 1-5 nm in diameter. Although most nanocrystals have the sphalerite structure, nanocrystals of wurtzite are also present, consistent with a predicted size dependence for ZnS phase stability. Nearly all the nanocrystals are concentrated into 1-5 mum diameter spheroidal aggregates that display concentric banding patterns indicative of episodic precipitation and flocculation. Abundant disordered stacking sequences and faceted, porous crystal-aggregate morphologies are consistent with aggregation-driven growth of ZnS nanocrystals prior to and/or during spheroid formation. Spheroids are typically coated by organic polymers or associated with microbial cellular surfaces, and are concentrated roughly into layers within the biofilm. Size, shape, structure, degree of crystallinity, and polymer associations will all impact ZnS solubility, aggregation and coarsening behavior, transport in groundwater, and potential for deposition by sedimentation. Results presented here reveal nanometer- to micrometer-scale attributes of biologically induced ZnS formation likely to be relevant to sequestration via bacterial sulfate reduction (BSR) of other potential contaminant metal(loid)s, such as Pb2+, Cd2+, As3+ and Hg2+, into metal sulfides. The results highlight the importance of basic mineralogical information for accurate prediction and monitoring of long-term contaminant metal mobility and bioavailability in natural and constructed bioremediation systems. Our observations also provoke interesting questions regarding the role of size-dependent phase stability in biomineralization and provide new insights into the origin of submicrometer- to millimeter-scale petrographic features observed in low-temperature sedimentary sulfide ore deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous Analytical Electron Microscope studies of extraterrestrial Chondritic Porous Aggregate (CPA) W7029* A, we have reported on the presence of layer silicates(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983) and metal oxides (Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1984). We present here a continuation ofthis detailed mineralogical study and propose a scenario which may account for the variety and types of phases observed in this CPA. At least 50% ofCPA W7029*A is carbonaceous material, primarily poorly graphitised carbon (POC) with morphologies similar to POC in acid residues of carbonaceous chondrites (Smith and Busek, 1981; Lumpkin, 1983). The basal spacing of graphite in CPA W7029*A ranges from 3.47-3.52 A and compares with doo, of graphite in the Allende residues (Smith and Buseck, 1981; Lumpkin, 1983). Low-temperature phases comprise - 20% of CPA W7029*A and include layer silicates, Bi,O" a-FeOOH(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983), BaSO.,.Ti.O, plates, pentlandite-violarite and bornite. Clusters of Mg-rich olivine and pyroxene make up - 12% of the aggregate...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely known that the compressed monolayers and bilayers of chiral lipids or fatty acids form helical morphologies, while the corresponding racemic modification gives only flat platelets without twist. No molecular explanation of this phenomenon is yet available, although subtle interactions at the chiral centers have often been proposed as the driving force behind the morphology of the aggregate to form a particular shape. In the present study, the morphologies of the chiral amphiphilic assemblies have been predicted on the basis of an effective pair potential between the molecules, which depends on the relative sizes of the groups attached to the chiral centers, the orientation of the amphiphilic molecules and also on the distance between them. It is shown that fur a pair of same kind of enantiomers, the minimum energy conformation favours a twist angle between them. This twist between the neighbouring molecules gives rise to the helicity of the aggregate. The present theory also shows from the molecular considerations that for a pair of mirror-image isomers (i.e. the racemic modification) the minimum energy conformation corresponds to the zero angle between the molecules, thus giving rise to flat platelets as observed in experiments. Another fascinating aspect of such chirality driven helical structures is that the sense (or the handedness) of the helix is highly specific about the chirality of the monomer concerned. The molecular theory shows, for the first time, that the sense of the helical structures in many cases is determined by the sizes of the groups attached to the chiral centers and the effective potential between them. The predicted senses of the helical structures are in complete agreement with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Blanchard-Quah (BQ) decomposition forces aggregate demand and supply shocks to be orthogonal. However, this assumption is problematic for a nation with an inflation target. The very notion of inflation targeting means that monetary policy reacts to changes in aggregate supply. This paper employs a modification of the BQ procedure that allows for correlated shifts in aggregate supply and demand. It is found that shocks to Australian aggregate demand and supply are highly correlated. The estimated shifts in the aggregate demand and supply curves are then used to measure the effects of inflation targeting on the Australian inflation rate and level of GDP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the final report from a study into the social impact of mining in Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an innovative instance similarity based evaluation metric that reduces the search map for clustering to be performed. An aggregate global score is calculated for each instance using the novel idea of Fibonacci series. The use of Fibonacci numbers is able to separate the instances effectively and, in hence, the intra-cluster similarity is increased and the inter-cluster similarity is decreased during clustering. The proposed FIBCLUS algorithm is able to handle datasets with numerical, categorical and a mix of both types of attributes. Results obtained with FIBCLUS are compared with the results of existing algorithms such as k-means, x-means expected maximization and hierarchical algorithms that are widely used to cluster numeric, categorical and mix data types. Empirical analysis shows that FIBCLUS is able to produce better clustering solutions in terms of entropy, purity and F-score in comparison to the above described existing algorithms.